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Predictions of the absorption of focused finite amplitude waves based on weak shock theory 
have been tested experimentally. The characteristics of this absorption are qualitatively 
different from those associated with small signal losses. Under appropriate conditions, the 
absorption of finite amplitude ultrasound is determined largely by source amplitude, field 
geometry, and the nonlinear properties of the medium and is only weakly dependent upon the 
small signal absorption coefficient of the material. These effects are seen most dramatically in 
sharply focused sound fields. To emphasize nonlinear absorption in an experimental test of 
these predictions, measurements of heating were made in agar which has a very small linear 
absorption coefficient. Under appropriate conditions, nonlinear losses can make the effective 
absorption coefficient of this poorly absorbing material somewhat greater than the soft tissues 
of the body. 

PACS numbers: 43.80.Cs, 43.25.Ed, 43.35.Bf 

INTRODUCTION 

In a homogeneous medium at small signal levels, it is 
possible to characterize the losses of ultrasound and the con- 
sequent generation of heat by a single property of the propa- 
gating medium which we call the absorption coefficient. 
However, propagation at finite amplitudes leads to wave- 
form distortion and to increased absorption. At a critical 
combination of distance and amplitude, a pressure discon- 
tinuity develops and there is subsequently a continuous pro- 
cess of shock formation and decay with excess absorption 
associated uniquely with the shock front. It is possible to 
define an absorption parameter to relate the local energy loss 
to the local intensity but it is much more complex than the 
absorption coefficient because it depends upon the geometry 
of the sound field, the distance traveled, and the nonlinear 
properties of the medium (Carstensen et al., 1982; Swindell, 
1985, 1986). 

Blackstock's (1966) "weak shock" theory 1 provides in- 
sight into these processes. [Note that "weak," in this con- 
text, simply means that the particle velocity is much less 
than the sound speed. All medically interesting sound fields, 
including those used in lithotripsy, are "weak" by this defini- 
tion. ] The theory assumes that linear absorption is negligible 
and that losses occur only at the pressure discontinuity in the 
wave front and depend only upon the degree of shock forma- 
tion. These losses occur as a result of strong irreversible pro- 
cesses generally resulting from the accentuated influences of 
viscosity, heat conduction, and relaxation at the discontin- 
uity and depend upon the strength of the shock and the shape 
of the waveform on either side of the shock. This "weak 

shock absorption aws" is essentially independent of the mag- 
nitude of the linear absorption coefficient of the medium as 
long as the linear absorption is small. 

Guided by weak shock theory, we have contrived an 

experimental arrangement which demonstrates the interest- 
ing characteristics of aws. First, because sharply focused 
fields yield the largest values of aw•, we have used focused 
sound to emphasize finite amplitude absorption as opposed 
to linear losses. Second, for the propagating medium, we 
chose water which has the lowest linear absorption coeffi- 
cient of any useful material. Third, we used a thermocouple 
to obtain a direct measurement of the conversion of acoustic 

to thermal energy. To avoid convection heat loss at the ther- 
mocouple, it was embedded in agar, which itself has a low, 
but non-negligible, linear absorption coefficient. This re- 
quired that we deal with another specialized aspect of non- 
linear absorption--the modification in the absorption which 
occurs when a shock wave seeks a new equilibrium distribu- 
tion of harmonic components after passing from one medi- 
um into another with different acoustical properties. The 
excess losses that occur near the interface in the more highly 
absorbing medium are of interest in certain applications of 
ultrasound in obstetrics where a poorly absorbing fluid me- 
dium separates the source transducer from the fetus. 

In our experiments, a focused sound wave propagated 
through water, developing a shock and suffering excess ab- 
sorption from finite amplitude effects along the way. Upon 
entering the agar, this weak shock absorption continued and 
produced heat at the thermocouple. In addition to the weak 
shock absorption, there was heating of the agar simply be- 
cause of its linear properties. This heating provides a low 
amplitude floor for the effective absorption parameter of the 
material. Even if the process of wave distortion associated 
with the nonlinear properties of the medium ceased as soon 
as the wave entered the agar, there would be an additional 
excess loss over the linear value simply because the incident 
wave contains a rich spectrum of harmonic components. 
The presence of these harmonics alone, even without the 
continued distortion of the wave by nonlinear processes, can 
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lead to an increase in the effective absorption coefficient of 
the material by as much as a factor of 2 for a short distance 
after the wave enters the agar. We have called this phenome- 
non material absorption O•ma t to differentiate it from the 
weak shock absorption which, in the limiting case, is inde- 
pendent of the linear absorption coefficient of the material. 2 
[In an earlier study (Carstensen et al., 1982), we used the 
term "harmonic absorption parameter" for O•ma t and aws 
was called "the finite amplitude absorption parameter."] 
Our experimental design attempted to emphasize aws by 
minimizing O•ma t . Thus, in our simplified view of the phe- 
nomena, there are two qualitatively different kinds of ab- 
sorption taking place in the material. One, aw•, depends al- 
most entirely upon the characteristics of the sound field 
while the other, O•mat, depends upon the linear absorption 
properties of the medium. In both processes, losses result 
from the generation and absorption of harmonic frequencies 
of the propagating wave. However, in the first case, the rate 
of generation and loss of this high frequency energy is inde- 
pendent of the linear absorption coefficient of the medium. 
To calculate aw•, one may use weak shock theory. This de- 
scribes the limiting behavior of a stable shock for small ab- 
sorption coefficients (Taylor, 1910; Lighthill, 1956). The 
Taylor shock represents a balance between nonlinear effects 
and the influence of absorption, but when a new medium is 
entered, this balance no longer holds. Consequently, the 
overall absorption upon entering a new medium could be 
greater (or less) than before. The theoretical treatment de- 
scribed here gives an estimate of the change in absorption 
when this balance is being re-established and should there- 
fore be valid close to the surface of the agar. 

I. THEORY 

When sound propagation becomes nonlinear, losses are 
no longer proportional to intensity and the effective absorp- 
tion parameter a has meaning only in the basic definition 

V'I 
a = -•, (1) 

21 

where I is the local intensity vector and I is its modulus. 
For a plane wave, the local intensity is written as 

= ez,ro B (2) t/ ' 

n=l 

where ez is the unit vector in the direction of propagation 
and the harmonic amplitudes B, (0-) are defined below. For 
an idea1, spherically converging wave (Blackstock, 1966, 
1972), 

l(z) = ezlo • B 2 (0-) (2) 
n=l 

where Zo is the focal distance, z r is the distance from the 
focus, and ez is the unit vector in the direction of propagation 
(Fig. 1 ). This simple model [Eq. (3)], and equations de- 
rived under its assumption, cannot be accurately applied at 
the focus because the wave amplitude becomes infinite. It 
also has limited application elsewhere in the beam because it 
is a one-dimensional model and does not take account of 

diffraction. Some of these problems can be overcome by us- 
ing a Gaussian beam profile to model the radial dependence 

z Zr 

! 

FIG. 1. Idealized focusing geometry. Using a source with a focal length Zo, a 
sample is placed at the position z from the source and z, from the focus. 
The spherically converging model assumes a point focus. In reality, diffrac- 
tion yields a finite beam width at the focus. 

of the wave amplitude (Bacon, 1986). The Gaussian model 
can be used to predict the nonlinear field in the focal region 
of a focused piston source, by appropriate matching of the 
experimental conditions to the theory (Bacon, 1986). This 
model does not describe the full near-field structure of a pis- 
ton source, but it does give an approximate description of the 
spatial variation of intensity in the focal region. Applying the 
model to determine the intensity gives (see the Appendix) 

l(z,r) =IoG2e [-2r2/ø2•+R2•] I' rR ro(1 + R2) 2 er 

+ 2) ez B 2 [0-(z,r) ], (4) (I+R =l " 
where e• is the unit vector directed along the axis of a cylin- 
drical coordinate system centered on the focus and er is the 
unit vector in the radial direction. G is the focal amplitude 
gain for the experimental sound field, 
R = -- (z•/zo) (G• -- 1 ) •/2, r is the radial position, a is the 
focal beam radius at the exp(- 1) amplitude level, 
ro = ka2/2, k being the wavenumber 2•r/A, where A is the 
wavelength of the sound, and G s = d/a is the theoretical 
focal gain for a Gaussian beam where d is the radius of the 
transducer. For our computations, the experimentally mea- 
sured focal amplitude gain was used' for both G and Gs. The 
focal gain was equal to the square root of the ratio of the 
measured focal intensity to the measured source intensity. 
On the axis of the focused sound field, the intensity becomes 

1 +R 2 e• B2(•r) (5) =1 

The harmonic coefficients B, given by Blackstock (1966) 
are 

• rain + cos n (•b -- 0- sin •b) d , (6) 
//77'0' .... 

where •bmi. is given by the transcendental relation 

•bmi n -- 0' sin •bmi n for 1 < 0' 

•bmi n •-0 for 0'< 1: (7) 

The waveform at the source, z, = Zo, is assumed to be sinu- 
soidal, i.e., at the source, B,= 1 for n = 1, and B, = 0 for 
n -• 1. The shock parameter 0' in these expressions increases 
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as the wave progresses and for media with low linear absorp- 
tion coefficients, serves as a descriptor of the degree of finite 
amplitude distortion. 3 [For 0- < 1, there are no discontinui- 
ties in the wave but the waveform may be distorted. For this 
reason, 0- is sometimes called the distortion parameter. ] In 
its general form, the shock parameter is given by the line 
integral along the path I [ray tube, (Blackstock, 1972) ] as 
follows: 

0- = l•k • e(1)dl, (8) 
where/• is the nonlinearity parameter of the medium, 

e = U/Co (9) 

is the acoustic Mach number, where u is the particle velocity 
amplitude, and Co is the small amplitude sound speed in the 
medium. At the source, 

= Uo /Co = [ 2oOCo 3 ] 
where Uo is the source particle velocity amplitude, p is the 
density of the medium, and Io is the source intensity. For 
plane waves, e is constant and (Blackstock, 1966) 

0-=13eokz, (10) 

for spherically converging waves e -- ez (Co/Jr ) and (Black- 
stock, 1972), 

0- = ]•eo kzo ln ( zo /Zr ), ( 11 ) 

and for a focused Gaussian beam e = [ eo G•( 1 + R 2) - •/2] 
for a path along the axis and, so (Bacon, 1986), 

0-__]•okzoGf {ln[Gf + x/G}_ 1 ] 
x/G•-1 

+ ln[R + x/1 + R 2]}. (12) 
The Append!x gives the off-axis formulation of the shock 
parameter. For the field on the acoustic axis the spherically 
converging wave model [Eq. (3)] and the focused wave 
model [ Eq. (5) ] are similar except near the origin (focus). 
Note that for Zr "• ZO --• oe, Eqs. ( 11 ) and (12) approach the 
plane-wave case where Zo -- Z r --- Z. 

A. Weak shock absorption 

Equation ( 1 ) can be applied to Eqs. (2)-( 5 ) to obtain a 
weak shock absorption parameter aws based on weak shock 
theory. Each of Eqs. (2)-( 5 ) can be expressed in the form 

I(z,r) =I• (z,r) •B2,,[or(z,r)], (13) 

where 0- is defined according to Eq. (8). In each expression 
for the intensity of the above form, the contribution to the 
divergence from I• is zero since it represents the linear, loss- 
less limit. Hence, 

V'I(z,r) = I• (z,r)'V [0r(z,r) ] • • B 2,, (0r). (14) 
Now, since 0- is defined as an integral along a ray tube 
(which is by definition parallel to I), I•. V [ 0r] = I• I IV[ 0r] I, 
hence, from Eq. ( 1 ) 

1 8o' o'(8/8o')5;B2,, (or) 
aws -- . (15) 

0- 0l 2•;B 2 (0-) 

Thus, the expression for aws can be separated into a purely 
geometrical factor which depends upon the convergence of 
the sound field [Eq. (8) ] 

F-•= 1 &r_ e(l) (16) 
0- Ol œe( l)dl 

and a part which can be determined generally, since it is just 
a function of 0- and is determined by weak shock theory 
[ right-hand side of Eq. (17) ] 

0-(0/O0-)[EB 2,, (0-) ] 
awsF= -- . (17) 

25;B 2 (0-) 

The expression on the right-hand side of Eq. (17) has been 
evaluated using the time-domain solution to the finite ampli- 
tude absorption problem (Blackstock, 1966, 1990) 

awsF = 203min 3 • 
2•min -[- 30-•min COS(•min ) -[- 3 (•- - •min ) ø'2 

(18) 

where •min is as given in Eq. (7). For a plane wave, 

F=z, (19) 

for a spherically converging wave, 

F= z r ln ( zo /Z r ) (20) 

and, on the axis of a focused Gaussian beam (see the Appen- 
dix) 

F= Zox/l+R2 {ln[Gf+x/G •-- 1] 

+ln[R +x/1 +R 2]}. (21) 

The right-hand side of Eq. (17) is completely deter- 
mined by the shock parameter or. Hence, it provides us with a 
relationship (Fig. 2) which can be used to determine aws as a 
function of or. As we can see from Fig. 2, aws is characterized 
by: ( 1 ) a zero value for cr < 1, (2) a very rapid increase in the 
range 1 < cr < 2, and (3) an upper limit, aws -- F - •, for or>> 1 
which depends only on geometrical parameters. Compari- 
son of the behavior of the function F for plane, spherically 
converging, and focused waves is given in Fig. 3. Note that 

2 

• o.! 
5 

0.01 I I 1 

o., i i ,.o i ; ,o , ,oo 

FIG. 2. The weak shock absorption parameter aw, plotted as a function of 
the shock parameter or. The parameter F (Fig. 3 ) depends only on geometri- 
cal factors of the sound field. 
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Gf= 10 

1/z 

Distance From Source (cm) 

FIG. 3. Limiting (large c) values of the weak shock absorption parameter 
aws. The reciprocal off [ Eqs. ( 19)-(21 ) ] is plotted as a function of propa- 
gation distance from the source for ( 1 ) a plane wave (I/z), (2) a spherical- 
ly converging wave [ 1 / (z, In z,/zo ) ], and (3) focused waves [ Eq. (21 ) ] 
with focal amplitude gains of 10 and 30. In this example the focus is located 
at 10 cm from the source. Note the agreement between focused waves and 
spherically converging waves except very near the focus. 

the maximum value for F- 1 for plane waves is near the 
source whereas, in converging and focused waves, large val- 
ues for F- 1 occur near the focus as well. For the focused 

Gaussian beam, the maximum value of F - 1 occurs just be- 
fore the focus at an approximate distance of 

Zo { 1 - 1/[ In (G/+ x/G• - 1 )x/G• - 1 ] ) from the source 
when G/• 1. 

For conditions of interest to biomedical ultrasound, e.g., 
z = 5 to 10 cm, the maximum value ofaws, in the plane-wave 
case, may be of the order of 0.1 to 0.2 Np/cm. In contrast, 
Figs. 2 and 3 show that, with focused sound beams (e.g., 
with Zr = 0 and Zo = 10 cm, G/= 30), it is possible to 
achieve values of aws greater than 0.5 Np/cm, a value some- 
what greater than the linear absorption coefficients of most 
soft tissues. Thus in principle, finite amplitude absorption in 
focused sound fields can be much larger than is found in 
plane wave fields. 

At first glance, the fact that aw• becomes independent of 
source amplitude for a• 3 might suggest that the heating 
rate would be directly proportional to the output of the 
source at large source intensities Io. However, it should be 
noted that the absorption parameter is defined in terms of 
the local intensity [Eq. (1)], and the local intensity also 
approaches a constant value at large Io (saturation). Hence, 
the heating rate approaches a constant value independent of 
the source intensity at large Io. 

The losses described by Eq. (17) are completely foreign 
to the concepts of linear acoustics. Weak shock theory 
(Blackstock, 1966) assumes that losses in the medium aris- 
ing from the fundamental frequency, linear absorption coef- 
ficient of the medium a• are small. As long as this assump- 
tion is valid, aw• is independent of the linear loss 
mechanisms of the material. In reality, the losses represented 
by aw• occur because of generation and absorption of high 
frequencies during shock development. However, the degree 
to which these losses occur depends only upon the shock and 
not upon the specific details of the loss mechanisms in- 
volved. Thus operationally, aw• is a qualitatively different 
loss mechanism and has a fundamentally different depend- 

ence on propagation distance, frequency, and material prop- 
erties from the dependence observed under linear propaga- 
tion conditions. Specific examples of aws are given at the end 
of this section. 

B. Absorption in the experimental medium 

Weak shock losses are adequate to describe the absorp- 
tion of the medium as long as its linear absorption coefficient 
a l at the fundamental frequency is small, i.e., when 
a l • 1/F. For water, this is true for most of the conditions 
used in this study. For other materials, there are small-signal 
losses which must be included if we are to describe heating 
adequately, particularly close to the interface between two 
media as explained in the Introduction. 

In the region of applicability of weak shock theory, a 
balanced distribution of harmonics develops so that attenu- 
ation occurs at the rate given by Eq. (17). The precise distri- 
bution of harmonics which produces that rate of loss will 
depend upon the frequency-dependent linear absorption co- 
efficient of the medium. In a medium with small but differ- 
ent absorption properties, a different distribution would de- 
velop, yielding the same attenuation. Upon transmission 
from one medium to another with small but different absorp- 
tion properties, the wave must travel a certain distance be- 
fore the distribution of harmonics reaches the new equilibri- 
um for the new medium. In that short transition distance, 

the net absorption could be higher or lower than given by 
Eq. (17). 

Of course, this is not the whole story for any real propa- 
gating medium. At low amplitudes, the absorption does not 
go to zero but rather has the value of the linear absorption 
coefficient a• of the material. Furthermore, even for • < 1, 
nonlinearities of the propagating medium transfer energy 
from the fundamental frequency of the wave to higher order 
harmonics that are absorbed at a higher rate than the funda- 
mental by linear loss mechanisms in the medium. These 
losses can be determined, first, by computing the harmonic 
spectrum at a particular point along the propagation path 
using weak shock theory and then by allowing the wave to 
propagate an infinitesimal distance Al along a ray tube, tak- 
ing into account the nonzero absorption of the material, i.e., 

oo -- 2a.l 
I(AI) = ezlo • B 2 ( •)e (22) n ' 

n=l 

where a, is the linear absorption coefficient of the material 
at the nth harmonic of the source frequency. Substituting 
this in Eq. (1) gives the total finite amplitude absorption 
parameter a•n (as AI approaches zero) 

•a.B :z ( er) !1 

t•fin(0') --- + t•ws -• t•ma t + aws. (23) 
•B: (a) n 

The first term is the material absorption parameter t•ma t . It 
takes care of linear losses and modifications in those losses 

resulting from changes in the waveform through nonlinear 
processes. The second term expresses the losses at the shock 
front as given by Eq. (17). For •r < 1, aw• = 0 and the total 
finite amplitude absorption is just t•ma t . Furthermore, since 
the waveform is not greatly distorted for •r < 1, a good ap- 
proximation to the total absorption can be obtained by sum- 
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ming over a modest number of harmonics. A number of 
methods exist for determining the maximum number of har- 
monics to be used in the summation. For a nonzero propaga- 
tion distance A! into the new medium, the maximum har- 
monic to be used can be estimated by requiring that the 
exponential term in Eq. (22) be significant. 

For cr > 1, aws accounts for the absorption which would 
occur even if the linear loss of the medium were very small 
whereas O•ma t is a first order attempt to estimate the excess 
losses arising from nonzero but modest linear absorption in a 
real medium. This will be valid in a real medium if its linear 

absorption is small enough that weak shock theory correctly 
represents the harmonic distribution in the wave. This clear- 
ly is true in our experiments at the interface between water 
and the agar sample. An example of the dependence of O•ma t 
on the shock parameter cr is given in Fig. 4. 

The parameter O•ma t Occurs because the nonzero losses 
at low frequency are neglected in weak shock theory. It also 
accounts for the process of achieving a stable shock structure 
in the new medium. This stabilization occurs over a distance 

AI, such that the exponential term in Eq. (22) becomes in- 
significant, as given by AI a. -• 1. Thus the high frequencies 
stabilize more rapidly with distance than the low frequen- 
cies. For these reasons, the summation used to obtain O•ma t 
should not extend to very high frequencies for nonzero prop- 
agation distances. A comparison of the predictions of Eq. 
(23) with a more rigorous analytical formulation involving 
the solution of Burgers equation for the plane-wave case 
(Christopher, 1990 and Christopher and Parker, 1990) 
shows that this approach [ i.e., Eq. (23) ] should be reasona- 
bly accurate for the experimental conditions used here. The 
3% agar used for the experiments had a measured small 
signal absorption coefficient which was approximately pro- 
portional to the frequency in the low megahertz region, 

I0.0 - 

5- 

2- 

0.1 I I I I 

o., i.o Io.o 

FIG. 4. The material absorption parameter Ëmat plotted as a function of the 
shock parameter or. It is assumed here that the small signal absorption coef- 
ficient of the material is directly proportional to frequency and area • is nor- 
malized to the linear fundamental absorption coefficient a•. 

whereas the absorption in water has a quadratic frequency 
dependence. Hence, there is some frequency fmax where the 
two absorption coefficients will be equal and this was taken 
to give the limiting frequency for the summation. This fre- 
quency corresponds to a certain harmonic number t/ma x . Ap- 
plying Eq. (22) to the case where the wave has traveled a 
small distance l' into the medium gives 

-- 2ctnl' /•max 2 
Z.=•a.B.(o')l•,=oe 

O•ma t (0') = (24) nmax 2 -- 2ctnl' ' 
•;. •B . (•r)lz,=oe 

where a. is the linear absorption coefficient of the medium 
for the nth harmonic of the fundamental frequency of the 
sound field. In this study, l' is small and the wave is assumed 
to be plane over that distance. For the reasons given above, 
this model is expected to be valid for a distance into the 
sample of about 1/O•nmax which is of the order of 1 cm for the 
material used in this study. 

C. Tests of theory 

Equation ( 1 ) indicates that, to measure the absorption 
parameter, it is necessary to know both the intensity I and its 
divergence. With the broad beams of plane piston sources, it 
is possible to measure total local intensities even at finite 
amplitudes by using a steel sphere radiometer (Carstensen 
et al., 1980, 1982). Unfortunately, we had no completely 
satisfactory way to measure the local intensity in a sharply 
focused sound field at very high intensities at megahertz fre- 
quencies. Hence, the absorption parameter itself [ as defined 
in Eq. ( 1 ) ] could not be measured directly. However, both 
the source intensity and the heating rate of a sample could be 
measured directly. The source intensity Io can be deter- 
mined radiometrically. The heating rate H in units of ab- 
sorbed power density at the target is just -- V-I where I is 
the local intensity. This heating rate in turn can be related to 
the rate of change of temperature T 

dT -- V.I 
• = •, (25) 
dt pC 

wherep is the density and ½ is the specific heat of the materi- 
al. Since the source intensity and the heating rate in the field 
can be related theoretically [e.g., through Eqs. (4), (17), 
and (23) ] this provides us with an experimental test of the 
theory. 

First, let us consider the predicted influence of the mate- 
rial absorption amat on the local heating rate in the field. 
Figure 5 shows the heating rate H for this absorption nor- 
malized to the source intensity Io plotted as a function of 
source intensity. This is the same process as shown in Fig. 4 
except that here all of the quantities are directly measurable. 
The heating rate depends upon the small-amplitude absorp- 
tion coefficient (and its dependence upon frequency) and 
the harmonic composition of the sound field which, in turn, 
depends upon the source intensity according to Eqs. (3)- 
(5). A specific example is given in Fig. 5, but the general 
characteristics of the (H/Io)mat curves are all alike. For 
or,( 1 (linear acoustics), (H/Io ) mat is constant and deter- 
mined by the small signal absorption of the medium at the 
fundamental frequency. As Io increases, the normalized 
heating rate rises reaching a maximum at approximately 
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I0.0 - 

• 2 

• s 

Io (W/cm 2) 

FIG. 5. Predicted heating rate H resulting from excess material absorption 
normalized t6 the source intensity Io. Frequency = 4 MHz; observation 
point is 0.5 cm beyond the surface of a 3% agar sample; focal length of the 
source = 10 cm; distance of the sample from the focus = 2 cm; measured 
small signal absorption coefficient is 0.01 Np/cm/MHz. nma,• -- 15. (•r = 1 
at •; •r = 1.5 at •; •r = 3 at + ). 

tr = 1.5 and then falls inversely with Io for tr> 3. 
Second, consider the characteristics of weak shock heat- 

ing as it relates source intensity to local heat development. 
The weak shock heating is zero for tr < 1 and then rises rapid- 
ly near tr-- 1. (H/Io)ws reaches a maximum at tr = 1.93. 
For tr > 3, (H/Io ) ws decreases inversely with Io. The pre- 
dicted dependence [ Eq. (17) ] of the normalized weak shock 
heating on (1) frequency, (2) proximity to the focus, and 
(3) focal length of the source is illustrated in Fig. 6(a)-(c). 
Increasing the frequency decreases the source intensity re- 
quired to produce a given weak shock heating rate but does 
not affect the maximum possible rate of heating [Fig. 6(a) ]. 
As one approaches the focus of a given sound field, the maxi- 
mum normalized heating rate increases and it is possible to 
achieve that maximum rate at lower source intensities [Fig. 
6(b) ].If one maintains a constant ratio Zr/Zo and varies the 
focal length of the source Zo, one finds that higher maximum 
heating rates can be achieved with short focal lengths; how- 
ever, somewhat higher source intensities are required to pro- 
duce maximal heating [Fig. 6(c) ]. As mentioned above, an 
analogous phenomenon is found with plane waves. This is 
illustrated in Fig. 7. In this case, the upper limit to the heat- 
ing rate increases as the point of observation approaches the 
source. In all cases, larger source intensities are required to 
produce this maximal heating when the point of observation 
is closer to the source. 

It is helpful to consider all of these phenomena in terms 
of the behavior of the function F in Eq. (17). Since the term 
on the right-hand side of Eq. (17) reaches a limit of unity for 
•>) 3 (Fig. 2), the maximum value of aws for a particular 
geometry is 1IF. In Fig. 6(a), the geometrical factors and 
hence F remain constant and so the maximum normalized 

heating rate is constant. In Fig. 6 (b) and (c), the maximum 
normalized heating rate changes in accordance with varia- 
tions in F. The source intensity for which the maximum nor- 
malized heating occurs is determined by the requirement 
that tr----- 1.93 [Eqs. (10)-(12)]. This agrees with results 
obtained by others of heating measurements in artificial tis- 
sue ( Bacon and Carstensen, 1990). When their data are pre- 
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FIG. 6. (a) The effect of frequency on weak shock heating using a spherical- 
ly converging wave model. For each of the curves, Zr -- 2 cm and z o = 10 
cm. Increasing frequency decreases the intensity required to produce finite 
amplitude heating but it does not affect the maximum obtainable normal- 
ized heating rate H/I o . (b) The dependence of weak shock heating on prox- 
imity to the focus using a spherically converging wave model. Frequen- 
cy = 4 MHz; Zo = 10 cm. The maximum obtainable heating H/Io 
increases as the point of observation approaches the focus and weak shock 
heating occurs at lower source intensities. Values of zr are in cm. (c) The 
dependence of weak shock heating on the focal length of the source using a 
spherically converging wave model. Frequency = 4 MHz; zr/Zo = 0.1. For 
constant ratios, shorter focal lengths produce higher normalized maximum 
heating rates H/Io, but higher source intensities are necessary to achieve 
maximal heating. Values of z o are in cm. 
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FIG. 7. Normalized weak shock heating for plane waves. Frequency -- 4 
MHz. Maximum heating rates increase as the point of observation ap- 
proaches the source but higher source intensities are necessary to achieve 
maximal heating. 

sented as H/Io, the maximum heating occurs at approxi- 
mately •r = 2. 

Total heating is the sum of the excess material and weak 
shock heating rates. This behavior is illustrated in Fig. 8. The 
assumptions leading to this conclusion should be valid under 
the experimental conditions of this study. 

The approach that we have used here is simple enough 
to allow a good intuitive feeling for the physical processes 
that are involved. Weak shock theory provides the basic con- 
cepts of finite amplitude absorption. However, it assumes 
that the linear absorption of the propagating medium is neg- 
ligible and needs to be applied with care. Separation of ab- 
sorption into material and weak shock components is a con- 
ceptual convenience invoked to deal with the nonzero linear 
absorption of the medium used for temperature measure- 
ments in this study. Equation (5) further adapts the model 
so that the field has the experimentally observed gain at the 
focus. With these procedures, it is possible to predict the 
nonlinear absorption under the special conditions used in 
this study. 
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FIG. 8. Total normalized heating rate (--) is assumed to be the sum of the 
weak shock (..-) and material (---) heating contributions. Conditions are 
as used in Fig. 5. 

II. EXPERIMENTAL PROCEDURES 

A. Source intensity 

Focused sound fields were generated by one inch diame- 
ter piezoceramic disks (and, in one case, a 2-in. diameter 
quartz element) which were coupled to planoconcave alumi- 
num lenses. The source intensity Io was measured by placing 
a large absorbing target directly in front of the lens and de- 
termining the total acoustic power with a radiation force 
balance. Io was taken to be the total acoustic power divided 
by the area of the source element in the transducer. The 
entire system from the input of the power amplifier to the 
acoustic power in the water immediately in front of the 
transducer was found to be linear up to the highest powers 
used in the study. To avoid excessive heating of the sample, 
only modest average total powers (of the order of 1 W) were 
used. When finite amplitude effects were desired, the source 
was pulsed with 100-ps on-times and appropriate off-times 
to keep the heating rates at manageable levels. 

B. Field intensity 

At low intensities, our standard probe was a 50-pm ther- 
mocouple embedded in castable rubber. Using its response 
to very short bursts ( < 0.1 s) of sound, the fine thermocou- 
ple is able to resolve the focal beam profiles of all of the 
transducers used in this study. In those cases in which it was 
necessary to have absolute values for the field intensity near 
the focus, we calibrated the response of the thermocouple 
probe to 0.05-s pulses of sound by comparison with a steel 
sphere radiometer in an unfocused sound field. Of course, 
absolute values of intensity in these sound fields were deter- 
mined only at small amplitudes where the response of the 
thermocouple is a linear function of intensity. 

C. Sample preparation 

To emphasize finite amplitude heating, we sought a sol- 
id medium with a very low, small-signal absorption coeffi- 
cient. In our studies, aqueous preparations of agar served 
that function. A fine copper-constantan thermocouple 
(junction diameter < 50 pm) was mounted in the sample 
chamber, 3% agar was poured around the thermocouple 
and allowed to harden. The distance from thermocouple 
junction to the front face of the sample was approximately 5 
mm. The agar concentration was a compromise between the 
desired low, small-signal absorption coefficient (which 
would have been achieved best at low concentrations of 

agar) and stability and reproducibility of measurements, 
which required a comparatively solid support for the ther- 
mocouple. 

D. Heating measurements 

As has been recognized from the first applications of 
thermocouples for ultrasonic heating measurements (Fry 
and Fry, 1954), the presence of the thermocouple in the 
sound field results in localized viscous heating which is a 
potential source of error. This is particularly troublesome 
when the inherent absorption coefficient of the medium is 
very small. Our solution to this problem was to use long 
exposure times ( --• 2 s). Localized heating of the thermocou- 
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FIG. 9. Representative temperature measurements. The solid curve repre- 
sents the temperature as recorded by a thermocouple embedded in an agar 
sample. The dashed curve is the temperature rise which would have oc- 
curred in the medium in the absence of the thermocouple. It was obtained 
by computing a series of heating curves for the measured beam pattern of 
the source and matching them to the experimental curve in the time period 
t > 1 s. The dotted curve, the difference between the solid and dashed curves, 
is the temperature rise which results from localized heating and other spur- 
ious effects related to the presence of the thermocouple. 

pie is confined to a layer of a few tens of micrometers and, 
because of heat diffusion, the rate of rise of temperature re- 
sulting from localized heating becomes negligible after a few 
tenths of a second (Fig. 9 ). In contrast, the direct heating of 
the medium by absorption, is distributed over the sound 
beam with a radius of the order of 1 mm. Thus the rate of rise 

of temperature of the medium between 1 and 2 s is dominat- 
ed by heating of the medium. Use of the data obtained be- 
tween 1 and 2 s avoided the artifact of localized heating 
caused by the presence of the thermocouple in the sound 
field, but for our focused sound fields, heat diffusion from 
the beam had a significant effect upon the rate of rise of 
temperature at times greater than 0.5 s. Hence, it was neces- 
sary to apply a theoretical correction to the temperature data 
(as discussed below) for heat diffusion from the sound beam 
to obtain the actual heating rate. 

For temperature data acquisition, the output of the ther- 
mocouple amplifier was recorded on a strip chart or convert- 
ed to digital form and stored in a laboratory computer. Sam- 
ple temperature data are shown in Fig. 9. These raw data 
include contributions from localized relative motion heating 
of the thermocouple as well as direct heating of the medium. 
Note the rapid rise in the first 0.1-0.2 s (localized heating) 
followed by a slower rise which is dominated by heating of 
the medium. The problem of relative motion losses in a finite 
amplitude wave has not been investigated. For the present 
study, the question has been avoided by elimination of local 
heating from the total heating rates. A further potential 
source of error is the conduction of heat away from the cen- 
ter of the field along the thermocouple wires. The magnitude 
of this effect is difficult to estimate, particularly in the dy- 

namic system considered here, but an estimate based on the 
formulation of Dickinson (1985) gave the error to be typi- 
cally 20% at low amplitudes. Experimental comparisons of 
the heating rate measured by thermocouples made from dif- 
ferent thicknesses of wire indicate that this error is less than 

10% in practice. 

E. Beam patterns versus heating patterns 

In order to make the corrections to the temperature data 
for heat diffusion alluded to above, we require information 
on the spatial distribution of the heating rate at the site of the 
thermocouple. The only device available to us with adequate 
resolution for these sharply focused sound fields is the ther- 
mocouple itself. At low intensities, we found that the re- 
sponse of the thermocouple to short (0.05 s) pulses was a 
linear function of local intensity over a range greater than a 
factor of 10. Thus the low intensity beam patterns could be 
obtained by slowly sweeping the thermocouple across the 
beam while pulsing the source at a cycle of 0.05 s on and 2 s 
off. The focal length Zo of the field was taken to be the dis- 
tance from the source where the sound beam had its smallest 

cross section. At the present time, there is no established way 
to measure directly the heating patterns of focused sound 
fields under nonlinear conditions. Thermocouples have suf- 
ficient spatial resolution for the task if very short pulses of 
sound are used in the measurements but we have no basis in 

present knowledge to conclude that the localized heating at 
the thermocouple interface is proportional to the heating of 
the medium under shock conditions. For this reason we have 

computed the effects of finite amplitudes on heating patterns 
as discussed below. 

There are two qualitatively different finite amplitude ef- 
fects on the beam patterns of sound sources. First, under 
certain conditions, the distribution of the intensity of the 
sound itself is changed because of relatively greater attenu- 
ation of the axial portion of the beam. This tends to "flatten" 
the beam pattern when the axial portion of the beam be- 
comes a sawtooth wave (Muir and Carstensen, 1980; Car- 
stensen et al., 1980, Shooter et al., 1974). Second and per- 
haps more important for this study, the "heating pattern" of 
the sound field can be sharpened when the shock parameter 
for the axial portion of the beam is between 1 and 3. This 
arises because the heating rate increases very rapidly as a 
function of intensity once shock formation begins. Thus the 
large axial intensities produce disproportionately greater 
heating rates than the lower intensities away from the axis. 
When the shock parameter is much greater than 3, the 
transaxial intensity distribution and the heating rates com- 
bine to make the heating pattern broader than it is at low 
source intensities. We treated the subject by measuring the 
transaxial intensity pattern of the transducer at low intensi- 
ties and computing finite amplitude effects for off-axis field 
points as though they corresponded to proportionally lower 
source intensities than points on the axis. Examples of such 
computed heating patterns are shown in Fig. 10. 

F. Data processing 

To relate the observed heating rate at 1.5 s to the initial 
heating rate of the medium at each experimental condition, a 
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FIG. 10. Calculated nonlinear effects on heating patterns of focused 
sources. Frequency -- 4 MHz, Zo -- 10 cm; Zr -- 2 cm. All curves are nor- 
malized to axial heating rate. Curve A is for Io -- 0.1 W/cm 2 (or = 0.24); 
Curve B is for Io -- 5 W/cm 2 (or- 1.7); Curve C is for Io -- 100 W/cm: 
(or = 7.5). At low source intensities the heating pattern and the sound in- 
tensity beam pattern are identical. When or-- 1.7, the heating pattern is 
somewhat narrower than the small amplitude heating pattern but for very 
large axial intensities, when the field approaches saturation, the heating pat- 
tern actually becomes broader than the small amplitude pattern. Computa- 
tions are based on the converging spherical wave model of the sound field. 

normalized curve of axial temperature versus time was com- 
puted. We assume that the thermocouple junction is located 
on the axis of a radially symmetric heating pattern. The heat- 
ing pattern can be modeled as a series of discrete coaxial 
rings about the thermocouple junction which is located on 
the axis of symmetry at r = 0, z -- 0 (see Fig. 11 ). The tem- 
perature at the origin from an instantaneous, ring, heat 

FIG. 11. The coordinate system used in modeling 
the heating pattern as a series of discrete coaxial 

• Z rings distributed in r and z. Sound propagation is 
in the z direction with the z axis of the coordinate 

system coincident with the axis of the sound beam. 

•- Ar 
II 

Az 

source Q [Q = 2•rrArAzT(r,z) ] of cross section ArAz locat- 
ed at r, z is (Carslaw and Jaeger, 1959; Carstensen et al., 
1981) 

T(t) 2•rrArAzT(r,z) exp[ - (r 2 -3- z2)/4•ct ], 
8 (met) 3/2 

(26) 

where t is time and tc is the thermal diffusivity of the medium. 
The temperature at the origin from an arbitrary ultrasonical- 
ly created heating pattern can be obtained by summation of 
an appropriate series of rings 

T(t,: al•ral•z (77'• A•) 
(/rKt) 3/2 -- •'t ß . (27) 

The source strength T(r,z) is 

2(aws + O•rnat )I(r,z)At 
T(r,z) = , (28) 

pC 
where I(r,z) is the local intensity, p is the density, C is the 
specific heat (mechanical units) of the medium, and At is 
the infinitesimal of time. Of course, because the propagation 
is nonlinear, both aws and C•ma t are functions of r and z. In 
practice, the product 2(aws + lSgmat )•r(F,Z) was calculated as 
discussed above for the heating patterns. For a finite expo- 
sure period (e.g., 1.5 s) Eq. (28) is substituted in Eq. (26) 
and the summation (integration) carried out over r, z, and t. 
These plots provide a ratio between the rate of change of 
temperature observed at 1.5 s, when the effects of localized 
heating of the thermocouple are negligible, to the rate of 
heating of the medium, dT/dt at t- 0. Because of finite 
amplitude effects, a different heating pattern and diffusion 
correction was required for each new intensity in the experi- 
mental procedure. 

In summary, the finite amplitude theory was used twice 
in these tests. Its primary use was to predict local heating 
rates as a function of source intensity. Secondarily, theory 
was used in the computation of the spatial heating patterns 
which, in turn, were used to compute the heat diffusion need- 
ed to relate the rate of rise of temperature at 1.5 s to the 
heating rate. In this way temperature measurements could 
be related to source intensity measurements through theory. 

III. EXPERIMENTAL TESTS 

The raw temperature versus time data frequently pro- 
vide a clear illustration of finite amplitude effects on heating. 
Figure 12 shows the temperature curves for two exposure 
conditions of equal average intensity. Curve A was a pulsed 
exposure with a source intensity of 15 W/cm 2 (or approxi- 
mately 3) during the on-time of the pulse, and with an aver- 
age intensity of 0.25 W/cm 2. Curve B was a continuous wave 
exposure with an intensity of 0.25 W/cm 2. If the heating 
mechanism were linear, the two curves would be identical. 
However, the heating rate for case A was approximately 
three times that for case B. The experimental data in this 
form qualitatively demonstrate the increase in heating due to 
nonlinearities. 
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FIG. 12. Raw temperature data demonstrating nonlinear heating. In both 
examples, the temporal average source intensity is 0.25 W/cm 2. Curve B is 
c.w., whereas, in Curve A the waveform consists of a train of 100 ps pulses 
each with a source intensity of 15 W/cm 2. 

Figure 13 presents the normalized heating rates (H/Io ) 
for a 4-MHz source with a focal length of 10 cm at positions 
in the sound field where z,./Zo is 0.1 and 0.25. These observa- 
tions are compared to the predictions of the focused [Eq. 
(21 ) ] and spherically converging [ Eq. (20) ] models for the 
sound field. For z,./Zo = 0.25, both models are good predic- 
tors of nonlinear heating. For z,./Zo = 0.1 the focused model 
continues to be a good predictor. However, as the focus is 
approached, the simplified spherically converging model, 
which ignores diffraction and hence leads to a narrower 
beam than is realized in practice, significantly overestimates 
the heating at all source intensities. Nevertheless, the experi- 
mental data illustrate the predicted characteristic that, as 

10.0 B 

0.1 * * , ! 

o.• '• • •.• • • •o.o • • •c;o.o 
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FIG. 13. Comparison of observed and predicted, normalized, heating rates 
showing the effect of proximity of the point of observation to the focus. 
Frequency = 4 MHz; thermocouple depth = 0.5 cm in 3% agar; Zo = 10 
cm. Open circles, Zr/Z O = 0.25; solid circles, Zr/Z O = 0.1. Curve A is the 
predicted heating for the Z r/Zo -- 0.25 case using either the spherically con- 
verging wave or the focused wave models. Curve B shows that the spherical- 
ly converging wave model (solid line) overestimates the heating rate at 
Zr/Zo -- 0.1. However, the focused wave model (dashed line) with the ex- 

perimentally observed focal gain of G = 8.8 satisfactorily predicts the heat- 
ing at this distance. (•r = 2 at • for curve A; •r = 2 at • for curve B). 
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FIG. 14. Focal heating in a sharply focused sound field. Observed and pre- 
dicted, normalized, heating rates are compared at the focus of a 3.6-MHz 
source with a focal length of 4.7 cm; G = 11; thermocouple depth = 0.5 cm 
in 3% agar. Although the frequencies in Figs. 13 and 14 are roughly the 
same, the maximum weak shock heating is greater here because of the 
smaller focal length. Focused wave formulations were used for heating rate 
predictions. (•r = 2 at •). 

the focus is approached, the nonlinear heating increases and 
the onset of this nonlinear heating occurs at lower source 
intensities [ Fig. 6 (b) ]. 

The increase in finite amplitude heating with decreasing 
focal length Zo as anticipated in Fig. 6 (c) is shown in Fig. 14. 
The transducer used for this test had approximately the 
same frequency (3.6 MHz) as in Fig. 13 but only one-half 
the focal length (Zo = 4.7 cm). Note that, in this example, 
the maximum heating rate exceeds by a factor of 10 that 
which would be expected if the mechanism were linear. In 
this case, the thermocouple was placed at the focus of the 
sound field. The solid curve is the predicted heating rate 
normalized to the source intensity using the focused model 
[Eqs. (5), (12), and (21) ]. 

As noted in Fig. 6(a), increasing the frequency lowers 
the source intensity at which finite amplitude heating be- 
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FIG. 15. Comparison of observed and predicted normalized, heating rates 
at 6 MHz. Thermocouple depth = 0.5 cm in 3% agar; Zo = 18 cm; Zr = 1.2 
cm. In comparison with Figs. 13 and 14, the higher frequency here results in 
a higher small signal heating rate. This tends to obscure the nonlinear con- 
tributions to the heating. In addition, the larger focal length used in these 
measurements tends to minimize the relative contributions of weak shock 

heating. (•r = 2 at •). 
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comes evident but this does not increase the magnitude of the 
finite amplitude losses. The small-signal absorption coeffi- 
cient of materials do increase with frequency, however, and, 
hence, the finite amplitude losses tend to be obscured at 
higher frequencies. This is illustrated by comparison of the 
6-MHz data in Fig. 15 with that for lower frequencies. A 
further reason for the lower heating elevation for the mea- 
sured data in Fig. 15 is the fact that the attenuation in water 
is sufficiently high that we are at the limits of the applicabili- 
ty of weak shock theory. 

IV. DISCUSSION 

In general, nonlinear processes increase losses and heat- 
ing. This results from the continuous distortion of the wave- 
form and consequent generation of high frequency compo- 
nents in the wave as it progresses through the medium. The 
nonlinearly generated, high frequencies are absorbed more 
rapidly than the low frequency which characterizes the 
source field. The losses associated with the shock front are 

essentially independent of the linear absorption coefficient of 
the medium as long as it is small. This is the special case 
considered by weak shock theory. We have chosen to explore 
the usefulness of its predictions because it demonstrates the 
fundamental physical processes which are involved in non- 
linear ultrasonic heating. 

To test the usefulness of weak shock theory in predicting 
finite amplitude absorption, measurements of heating in 3 % 
agar samples, produced after propagation through a water 
path, were conducted for a variety of frequencies and degrees 
of focusing. Measurements were made in the prefocal and 
focal regions. The theory was used to predict the acoustic 
intensity in the converging sound field, the rate of dissipation 
of the ultrasonic energy throughout the field and deviations 
of the heating pattern from the acoustic beam pattern. In 
spite of the fact that the weak shock theory for. spherical 
waves (Blackstock, 1972) does not consider diffraction ef- 
fects and the inherent absorption of the medium, it can be 
used to predict finite amplitude absorption with reasonable 
accuracy in the proximal focal region before diffraction in- 
troduces an important limitation to the amplitude of the 
beam. With Bacon's (1984) formulation for diffraction, fi- 
nite amplitude heating can be predicted with reasonable ac- 
curacy even at the focus. Although the Gaussian beam is not 
the same as the true beam, Bacon (1986) has shown that it 
can be successfully matched to the field of a focused piston 
source to predict nonlinear effects. By combining finite am- 
plitude absorption with the excess absorption of harmonics 
as the wave passes into the material surrounding the thermo- 
couple, we have been able to describe the dissipation of 
sound in focused nonlinear ultrasound fields where the small 

signal absorption is relatively small. Because finite ampli- 
tude absorption is much greater in focused than in unfocused 
fields, the evidence for weak shock absorption in the current 
series of experiments is somewhat clearer than our earlier 
study of nonlinear absorption phenomena (Carstensen et al., 
1982). 

The theoretical procedures in this paper provide reason- 
able models for the nonlinear losses for the experimental 

conditions of this study. In particular, the spherically con- 
verging model is a good predictor of nonlinear loss on-axis in 
the prefocal region before diffraction effects limit the wave 
amplitude, and by using a Gaussian beam the model be- 
comes a reasonable predictor of nonlinear loss near and at 
the focus. Even the Gaussian model, though, does not ac- 
count for the minima and maxima that occur in the prefocal 
region. This near field structure gives rise to spatial fluctu- 
ations in the heating pattern, but these fluctuations tend to 
be smoothed out by thermal conduction within the medium. 
Indeed, the agreement that has been obtained with the Gaus- 
sian theory suggests that this mechanism can be very effec- 
tive, and it is therefore not always necessary to model the 
detailed structures of the field. The version of the Gaussian 

beam model used here does not model the phase of the wave, 
but is has nevertheless been shown to give good predictions 
of the harmonic amplitudes (Bacon, 1984). The predictions 
are expected to be reliable in the vicinity of the focus, which 
is where the heating effects are greatest. There are, therefore, 
important biomedical applications where these predictions 
are relevant, e.g., exposure of the fetus through a poorly at- 
tenuating window of urine and/or amniotic fluid (Bacon 
and Carstensen, 1990). At present, there is no analytical 
solution of the general problem of focused sound fields in- 
cluding the effects of diffraction, dispersion, and absorption. 
Comprehensive solutions to the general problem involve 
computationally intensive, step-by-step propagations of the 
wave from source to field point taking into account the dis- 
tortion by nonlinearities and the losses which occur at each 
step (Bakhvalov et al., 1978; Haran and Cook, 1983; Swin- 
dell, 1986; Hart and Hamilton, 1988; Bacon, 1989; Bacon 
and Baker, 1989; Christopher, 1990; Christopher and Park- 
er, 1990). 

Because of its simplicity, this approach to nonlinear ab- 
sorption and heating has been helpful in understanding the 
fundamental physical phenomena involved in finite ampli- 
tude absorption. Of particular interest here is the prediction 
[Eq. (17)] that the weak shock contribution to the total 
absorption can be written as the product of a purely geomet- 
rical term and a term that depends only on the shock param- 
eter c. Our experimental tests were chosen to emphasize this 
weak shock component of the heating. For most medical 
applications of focused ultrasound where small signal tissue 
absorption coefficients are large and where a significant part 
of the sound path is in tissue, it would be wise to begin with a 
theoretical formulation which includes these tissue losses. 

Even when the propagation path is mainly in tissue, it 
has been shown that significant extra heating due to nonlin- 
ear propagation can occur. For instance, Swindell (1985) 
predicted that it is possible to obtain approximately 50% 
enhancement of heating for propagation in tissue, which is 
similar to the enhancement measured by Hynynen (1987). 
Measurements of nonlinear losses in biological tissue using 
focused, 1-MHz ultrasound were also reported by Goss and 
Fry ( 1981 ) and Fry et al. (1989). Duck and Starritt (1989) 
measured the excess absorption of the fundamental by com- 
paring measured pulse energies in water at high and low 
source powers for several axial positions. 

Success in hyperthermia and thermal surgery frequently 
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depends upon being able to deposit heat selectively at depths 
somewhat below the surface of the body. If plane-wave ultra- 
sound is used, the maximum heat development is usually at 
the surface of the body. With plane waves at finite ampli- 
tudes, surface heating, if anything, would be exaggerated. 
On purely linear considerations, it is frequently desirable to 
use focused fields for deep heating. The qualitative charac- 
teristics of finite amplitude heating which have been illus- 
trated here suggest ways in which nonlinear phenomena 
may be employed to selectively increase the absorption pa- 
rameters of tissue and thus increase heating in desired loca- 
tions in the deep tissues ($windell, 1985, Hynynen, 1987). 
Theoretical developments which adequately consider the ef- 
fects of diffraction, dispersion, and absorption along the en- 
tire path of propagation will be necessary for this and other 
applications in medical ultrasound to be realized (Christo- 
pher, 1990; Christopher and Parker, 1990). 

v. CONCLUSION 

This paper has developed a method for predicting the 
heating rate due to the absorption of focused ultrasound un- 
der conditions of nonlinear propagation. A particular ad- 
vantage of the method is its simplicity, with results being 
expressed in analytical form. If the propagation path con- 
tains a significant amount of material with a low attenuation, 
then a shock can form and the effective absorption param- 
eter can be high compared with that for soft tissue. Under 
the experimental conditions used here, at a frequency of 
about 4 MHz, the maximum absorption coefficient in 3% 
agar was in the range 0.3-0.8 Np/cm. The method could be 
incorporated into a model of heat diffusion and perfusion to 
calculate temperature rises in applications such as hyperth- 
ermia or ultrasound diagnosis. 
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APPENDIX 

The second-order, nonlinear, parabolic wave equation 
has a low-amplitude solution (e.g., Bacon, 1986) 

PO [ -- r2/a2(1 --jR)] +j(a•t-- kz) p- e (A1) 
(1 --jR) 

for a Gaussian beam with focus at Zr = 0 and radial position 
r, where R = 2(z -- Zo )/ka 2, Zo is the focal length, a is the 
focal beam radius at the exp ( -- 1 ) amplitude level, and k is 
the wave number. The particle velocity can be determined 
from Eq. (A 1 ) using u = V(I) where (I) = -p/( jcopo ). In 
cylindrical coordinates, this gives 

U (I• a2( 1 --jR) 

--2jr 2 -3- (D . ka4 ( 1 -----fR ) 2 -jk --I- 
ka 2 ( 1 - jR ) 

(A2) 

The intensity expressed as I -- ( 1/2) Re (u 'p* ) becomes 

l(z,r) -- Io G 2el - 2r 2/a2(1 + R 2)1 (. rR ro(] -•R2) 2 er 

' ) + ez , (A3) 
(l +R 2) 

where ro = ka2/2 and G is the amplitude gain at the focus. 
For this lossless case, the divergence of the intensity as given 
in Eq. (A3) is zero. 

For the general nonlinear case, all of the harmonic am- 
plitudes have the general form given by Eq. (A3) (Bacon, 
1986) and hence it can be shown by integrating along a ray 
tube that the intensity is 

l(z,r) = Io G 2e [ -- 2r 2/a2(1 -3- R2)] ( rR ro(] + R 2)2 er 

-t- 2) ez B 2 [•r(z,r) ], (A4) (I+R .=• " 
where the nonlinear losses are accounted for in the summa- 

tion term and the Gaussian radial dependence of the shock 
parameter is described as 

On[O + 40) 
x/G3-- 1 

+ln[R -3-41 +R2])½ [-r2/a2(l+R2']. (A5) 
The divergence of Eq. (A4) gives the off-axis variation 

of the heating rate, i.e., the heating pattern as a function of 
the shock parameter 

V'l(z,r) = Io fiføkG2Gf e [ -- 3r2/a2(1 + R2)I 
(1 + R 2)3/2 . 

x • • B • [tr(z,r)l (A6) 
The finite amplitude absorption for the focused case is 

obtained by using Eqs. (A6) and (A4) in Eq. ( 1 ) to give Eq. 
(17) where now 

F= Zox/l+R2 {ln[ Gf + x/G3-- 1 ] 

+ln[R+x/l+R2]) 1+ ro(l+R 2) ' 
(A7) 

For the cases described in this paper [ rR/ro ( 1 + R 2) ] is 
small and F is given by Eq. (21 ). 
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